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ABSTRACT

Calibrated climate-based lighting simulation models of buildings have the capacity to perform an essential
role in post-occupancy evaluations, such as annual frequency assessments of daylighting quality
and visual discomfort. However, in most post-occupancy case studies the role of lighting analysis is
temporally limited by instantaneous measurements or limited in scale by requiring constant monitoring
with expensive sensors. It is challenging to build calibrated models based on point-in-time measurements
due to the presence of electric lighting, transient use of dynamic shades, limited information on the
material specifications, and short durations of accessibility to the spaces being studied. The authors
propose and present a calibration process for annual daylighting and electric lighting simulation models
based on one-time field measurements of large daylit and electrically-lit spaces exemplified through
a data set of 540 individual office desks across 10 office spaces. The calibration process includes
measuring lighting, physical and material data during a one-time visit that are used to calibrate high
dynamic range images and lighting simulation models using actual weather data. The calibration
accuracy is validated based on measured and simulated luminance and illuminance data. Comparing
measured and simulated illuminance, relative RMSE values were 25.8% and 45.5% for horizontal and
vertical measurements respectively. When tracking errors using log10(illuminance), approximating
human perceptual differences, errors of 4.3% and 6.8% were achieved. Vertical illuminance was found
to vary more with measured data due to the uncertainty of monitor screen luminances. The authors
aim to achieve calibrated lighting models reliable enough to be used in assessing the relationship of
annualized lighting metrics to participants long-term perceptions of lighting quality, thereby enabling
simulation models to be used in the post-occupancy evaluation process of building lighting. This paper
demonstrates that measured data through one-time visits can be utilized to build reliable calibrated
lighting simulation models to integrate long-term annual lighting results in post-occupancy evaluations.
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1 Introduction and Background

Simulating daylighting and electric lighting in digital architecture models in various stages of design has
become quintessential for informing design decisions to meet quantitative and qualitative lighting goals by
predicting building performance prior to construction. Post-occupancy evaluations (POE’s) of completed
buildings and spaces close the loop by providing feedback on the end-quality of a design to the building
and construction industry who can assess if the project brief was met (Oseland, 2007) as well as serve
an important role by allowing researchers to generate knowledge of occupant well-being based on actual
user experiences. This can well lead to new recommendations to inform future designs of buildings. Most
POE’s focus on instantaneous measures of illuminance or visual comfort using High Dynamic Range
(HDR) photography techniques within a monitoring time period. However, architects, energy consultants,
engineers, lighting designers and researchers designing for daylight today use computer daylighting simu-
lations and annualized lighting measures (Reinhart and Fitz, 2006) and recently including climate-based
daylighting metrics (CBDMs) and annual visual comfort analysis to assess potential designs instead of
static daylighting metrics (Reinhart et al., 2006). To truly ’close the loop’, these annual daylighting metrics
need to be evaluated based on a comparison with overall user perceptions of a space and the annual lighting
they experience. To this end, this manuscript describes a process of calibrating daylight simulation models
during POE field studies which can be used to calculate annual CBDMs as a component of building POE’s
based on short-term visits instead of long-term monitoring. Having said that, the proposed methodology
does not aim to replace current POE methods but rather to extend and refine the capabilities of POE’s by
correlating actual annual daylighting metrics to the overall queried experiences of occupants. Models of
10 office buildings with 540 calibration points—occupant seating locations of participants—are calibrated
and validated in this manner as a proof of concept. This study is the first large-scale calibration effort that
aims to utilize long-term lighting simulation data for post-occupancy studies, enabling the comparison of
CBDMs to occupant impressions in daylit spaces over a long period of time. Although the calibration and
validation study is situated in the tropical climate in Singapore, the proposed work flow is applicable to
any climate.

Many measurement-driven POE studies in the research literature are based on single instantaneous
measurements and do not utilize long-term monitoring nor annual predictive data. Bear and Bell measured
illuminance, source luminances, surface reflectance, geometric factors and subjective information for 471
participants as early as 1992 (Bear and Bell, 1992). Osterhaus surveyed 86 participants in 9 office spaces
(Osterhaus, 2001). Parpairi, et al. measured luminance values manually and illuminance at limited points
in time in 3 libraries from 26 typical users of the spaces (Parpairi et al., 2002). Dahlen, et al. measured
discomfort glare metrics using High Dynamic Range (HDR) photography along with illuminance and
subjective information from 298 female college students over a two month period, categorizing overcast
and clear sky conditions separately (Dahlan et al., 2009). Choi, et al. measured instantaneous luminance
using HDR photography and illuminance, among other IEQ factors, at 402 occupant desks using a mobile
sensor cart, although they spread their measurements out over a period of time in order to collect some
level of seasonal information (Choi et al., 2012). Hirning, et al. measured discomfort glare using HDR
photography for 419 occupants not experiencing discomfort due to reflections from their monitor screen
and photographs were taken from the occupant’s point of view close in time to when participants filled
out a short subjective survey (Hirning et al., 2013, 2014). Mangkuto, et al. used HDR photography to
measure luminance and glare metrics in an Indonesian library space over a 6-day period, collecting 86
measures paired with subjective information (Mangkuto et al., 2017). Hirning, et al. repeated their study
in Malaysia with 341 participants in 6 separate office spaces (Hirning et al., 2017). In summary, for direct
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measurement POE studies, it is feasible to quickly collect a large number of data from a diverse range of
participants. The mean number of subjects or data points in these studies is 292. However, limitations do
emerge—the vast majority of studies collect limited seasonal or temporal data, localizing the results at the
specific point-in-time the measurements are taken.

Another approach employed by researchers has been to utilize long-term data monitoring in order to gather
a more holistic representation of POE participant’s lighting experiences. Fan, Painter, and Mardaljevic
recorded HDR photographs and frequent subjective information using a computer application for 5 occu-
pant workstations. Cameras were mounted as close to the head position of the occupant as feasible, which
resulted in errors generally below 25% (Fan et al., 2009). Their study was later carried on for a period
of one year (Painter et al., 2010). Konis recorded ambient environmental conditions, HDR photographs,
and subjective ratings on a continuous scale for 14 participants over a 2-week period collecting 523 data
points overall. A custom sensor and polling device was created and placed upon occupant’s desks; it
prompted participants periodically for subjective feedback using a physical slider at which time a HDR
photograph would be taken (Konis, 2013, 2014). Drosou, et al. installed 2 high-quality HDR camera
capture setups in classrooms, monitoring their lighting performance every 10-minutes for an entire year.
Limitations included a period of data loss due to camera shutter failure and a single, fixed viewing location
not from an occupant point of view (Drosou et al., 2016). Bellia, et al. continuously measured occupants
in 3 private offices during a 3-day period while measuring luminance and illuminance (Bellia et al.,
2017). Extrapolating from the above studies, continuous measurement studies are limited by the cost and
maintenance of equipment, thereby enhancing the quality of data per participant but limiting the number
of participants for which data can be reasonably and affordably collected.

A third, but less utilized, approach to gather experiential daylighting data inside of spaces has been
to employ daylighting simulations, often using a validated Radiance-based engine (Ward, 1994) such
as Daysim (Reinhart and Walkenhorst, 2001). Reinhart, et al. used quasi-calibrated CBDM results
paired with subjective data to identify annual lighting performance levels that correlate with perceptions of
’daylit.’ (Reinhart et al., 2014) Jakubiec and Reinhart used a daylighting model based on measured material
properties, exacting geometric reconstructions, and specific weather data to assess annual lighting and
glare metrics for 123 participants in a POE study at a 6-minute time interval (Jakubiec and Reinhart, 2016),
but the model’s calibration was not checked with measurements, and contributions from electric lighting
were ignored. Bellia expressed the opinion that this approach was not feasible due to the complexity and
time commitments of modeling data. (Bellia et al., 2017) Mardaljevic, et al. noted that CBDMs are difficult
to validate in practice due to obstructions on the workplane where sensors would ordinarily be placed for
long-term monitoring and that illuminance data is not ordinarily a part of building management systems.
(Mardaljevic et al., 2016) They propose to use a continuous luminance camera to derive illuminance on
vertical surfaces in order to validate CBDM illuminance calculations. Other researchers have noted the
importance of appropriate material properties in simulations to achieve accurate results. (Jakubiec, 2016;
Brembilla et al., 2015)

While not commonly utilized in POE lighting studies, calibrating CBDM daylighting models allows
researchers to refine the POE process and extend it to design processes by analyzing the same annualized
lighting metrics. Instead of a long-term monitoring approach, physical and lighting measurements are
collected during a short visit, and calibrated daylighting models are then built and validated before being
used to simulate annual CBDM results. Time-series data from the occupants’ point of view can be easily
obtained for an unlimited number of participants, not limited by sensor availability or manpower. However,
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limitations are given by the accuracy of the models and a difficulty in evaluating their accuracy before
being used to simulate annual daylighting conditions. Therefore this paper takes an approach to validate
the performance of lighting simulation models for utilization in POE lighting studies based on limited
measurements. Specifically, the problem of simultaneous presence of electric lighting and daylighting at
the same time is addressed. First, a methodology is presented by which detailed field measurements are
taken in currently occupied buildings and used to calibrate a combined daylighting and electric lighting
simulation model. Next, this method is applied to the calibration of 10 models of office spaces, and model
accuracy is validated using standard root mean squared error and mean bias error in addition to perceived
errors modified for logarithmic human vision. Finally, the discussion focuses on what the methodology
proposed in this manuscript means for future work in POE lighting analysis and research.

2 Methodology
Measurements at office desks of 540 occupants in 10 offices were recorded during the period between
October 2016 and August 2017. There were no specific criteria applied when choosing the office buildings
—just to be an office building located in Singapore. The offices the authors measured were a mix of public
and private sector office buildings. Some characteristics of the 10 offices are detailed in Table 1, including
the typology, types of roller blinds, glazing transmittance (Tvis), window to wall area ratio (WWR) and
if any Green Mark (GM) award was attained. Green Mark is a green building certification system in
Singapore which mirrors that of others known certification systems such as LEED, CASBEE, Green Star,
etc. Calibrated climate-based daylighting models were then built according to field measurements: HDR
images, illuminance and luminance measurements, material reflectance measures, space measurements,
and external weather data. This section describes measurement techniques and calibration steps used to
create and validate calibrated models for further climate-based daylighting analysis. Figure 1 explains the
general overall workflow. Computational scripts were written to automate each process due to the large
amount of data.

Office Building Typology Rollerblinds* Tvis WWR Award

1 12-Storey Office Tower O,T 25% 62% GM Platinum
2 17-Storey Office Tower O,T 40% 44% GM Platinum
3 20-Storey Office Tower T 35% 64% GM Platinum
4 27-Storey Office Tower O,T 10% 60% GM Gold
5 Office space in 5-Storey Shopping Mall T 15% 25% -
6 Office space in 10-Storey Industrial Building T 55% 22% -
7 3-Storey Retrofitted Building T 50%,56% 60% -
8 27-Storey Office Tower T 37% 62% GM Platinum
9 17-Storey Office Tower O,T 32% 60% GM Platinum

10 27-Storey Office Tower O,T 37% 62% GM Platinum

*O: Opaque, T: Translucent

Table 1. Characteristics of the ten measured office spaces

2.1 Field Measurements
Of the 10 offices measured, some occupy multiple floors (Offices 1, 8 and 10 in Table 1), and 2 offices are
situated in the same building separated by 12 floors(Offices 8 and 10 in Table 1). Beyond formal and layout
differences, each office has different material finishes and luminaire selection. High Dynamic Range
(HDR) photographs, workplane and vertical illuminance, and luminance measurements from a neutral
grey card were captured and recorded at each of the 540 occupants’ desks. Each set of measurements took
approximately 3 to 5 minutes to complete. Occupants were asked immediately preceding the measurements
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Figure 1. Overall workflow for calibrating climate-based daylighting models from single point-in-time
measurements

to fill out a short subjective survey on their perceptions of instantaneous and long-term lighting quality;
however, those subjective components are not the focus of this paper.

2.1.1 Illuminance and Luminance Measurements
Before measurements are taken, occupants are asked to leave their desk such that the camera and lighting
sensors can be positioned freely at the eye position and on the workplane. Horizontal illuminance (lux)
on the desktop surface is measured once, after the HDR photographs are taken. Figure 2 illustrates
the positioning of the illuminance and luminance meters for the respective measurements. Luminance
measurements (cd/m2) from a grey card are recorded with a luminance meter (Konica Minolta LS-100),
and vertical illuminance (lux) is recorded with an illuminance meter (Konica Minolta Illuminance Meter
T-10A or Illuminance Spectrophotometer CL-500A) before the first exposure and after the last exposure of
the HDR photograph are captured, in front of the fisheye lens from the occupant’s viewpoint. The average
value of the before and after luminance measurements are used in calibrating the images, to account
for minor changes in lighting levels during the HDR capture. If illuminance or luminance values differ
significantly, the image is discarded.

2.1.2 HDR Photography
HDR fisheye photographs were taken at each occupant’s desk to capture luminance values from their
point of view shortly after filling out the subjective survey. The methods used are according to the
recommendations proposed by Inanici and Jakubiec, et al. (Inanici, 2006; Jakubiec et al., 2016). The
occupant is asked to vacate their desk before the measurements start—see Figure 2a. A full frame DSLR
camera (Canon EOS 5D Mark III) with a fish-eye lens (Canon EF 8-15mm f/4L Fisheye USM or Sigma
8mm f/3.5 EX DG Circular Fisheye Lens) was used with a stable tripod. A series of 16 photographs
with exposure times at an interval of 1 stop from 8 sec. to 1/4000 sec. were taken. A f-stop of f/11 and
ISO speed of 100 were used throughout. The white balance was set to the daylight setting. Examples
of HDR luminance maps of randomly selected participant desks from the 10 office spaces are shown in
Figure 3. The individual exposures were converted to the Radiance angular fisheye (-vta) image projection
(Ward, 1994) based on measurements of the lens projections taken with a panoramic tripod head. The
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(a) 1. Camera setup for HDR photography, 2. Vertical
illuminance measurement location, 3. Horizontal
illuminance measurement location

(b) Luminance measurement setup

Figure 2. Measurements and HDR photography setup

images are then cropped to a 180 degree opening angle with a circular mask and resized to 800x800
pixels. The series of photographs were then converted into HDR images using Photosphere (Ward, 2005).
Approximately half of the HDR images captured in this study did not have a corresponding luminance
measurement. These images were calibrated based on vertical illuminance measurements taken at the
camera lens. Images with a corresponding luminance measurement were then calibrated in Photosphere
manually using the luminance data measured on the grey card. Finally, vignetting correction (Jakubiec
et al., 2016) was applied to the HDR photos to correct for light attenuation at the edge of the fisheye
photograph.

Figure 3. An example of HDR image collected from each of the 10 office spaces measured
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2.1.3 Physical Measurements
A laser scanner (FARO FOCUS 3D X330) was used to scan the interiors and exteriors of the office
spaces. This acts as a geometric reference for the precise construction of a 3D model. The 3D scan
data, which is in the form of a point cloud, approximates the interior layout including dimensions and
positions of furniture and electric lighting—see Figure 4 for an example. The scan files were processed
and exported and imported into Rhinoceros 3D (McNeel and Associates, 2017) and used to build a detailed
surface model. Due to the large file size of point clouds, screen captures of the relevant clipped views
and measurements in 3D space using a point-cloud analysis software were used to calibrate the geometry
of the model, instead of the actual point cloud. However, laser scanning is an optional step and may be
replaced by hand measurements, or using as-built BIM-models after verifying their measurements. The
surface geometry created in this step is converted to polygonal meshes and exported to the Radiance .rad
format (Ward, 1994) using the DIVA plugin (Jakubiec and Reinhart, 2011).

Figure 4. Example of 3D scan point cloud and screen captures of furniture plan and luminaires (orange
rectangles) from Office 1

2.1.4 Measurement of Material Reflectance Data & Translation to Radiance Material Definitions
Material reflectance data of surfaces were measured using a spectrophotometer (Konica Minolta CM-
2600d Spectrophotometer) based on an average value of three-point measurements across each surface
material type. Each material finish had two types of reflectance recorded, Specular Component Included
(SCI) and Specular Component Excluded (SCE) respectively which are both full-spectrum colorimetric
measurements. The difference between SCI and SCE is used to derive the specular versus diffuse
components of reflectance. A photo is also taken for reference, and roughness values are estimated based
on the visual appearance of the images (Jones and Reinhart, 2017). The material data was converted to
Radiance material definitions as described by Jakubiec (Jakubiec, 2016). Where the glazing transmittance
information is not obtainable, it was either measured if the windows are operable or estimated from initial
visualization simulations. Where the glazing transmittance was known, it was converted to transmissivity
by multiplying by 1.09 (Jacobs, 2012). A generic monitor model was used for all the desks, modeled
according to Jones (Jones and Reinhart, 2017) but with modifications to match the average observed screen
luminances in Singapore with a high-state pixel luminance of 125 cd/m2 and low-state pixel luminance of
33 cd/m2. A generic roller blind with a direct normal transmittance of 0.01, front reflectance of 0.37, back
reflectance of 0.56 and diffuse transmittance of 0.2, and transmittance that drops to zero at 84 degrees,
was used. It can be accordingly calibrated for specific roller shade types in different offices. A typical set
of Radiance material definitions measured and produced for one of the office spaces is shown in Table
2. Alternatively, cheaper and substantially accurate methods to measure material reflectance are also
available, such as the illuminance method, using the CIBSE color chart or RAL color fan, according to
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Gradillas’ comparisons. (Gradillas, 2015) Another possible technique is one developed by Mardeljevic et
al., using HDR imaging to derive surface reflectance maps through a interpolated illuminance map and a
HDR luminance map. (Mardaljevic et al., 2015)

Material Radiance Definition

Interior Wood Laminate Table Top void plastic TableTop 0 0 5 0.6112 0.4779 0.3081 0.0141 0.15
Beige Partition Fabric void plastic PartitionFabric 0 0 5 0.6249 0.5803 0.4762 0.0097 0.10
Grey Carpet void plastic GreyCarpet 5 0.0731 0.0708 0.0654 0.0000 0.40
Grey Mullions void plastic GreyMullions 5 0.4618 0.4716 0.4765 0.0374 0.05
White Wall void plastic WhiteWall 5 0.8911 0.8933 0.8495 0.0107 0.30
White Column void plastic WhiteColumn 5 0.8884 0.8896 0.8423 0.0113 0.30
Acoustic Ceiling Panels void plastic AcousticCeilingPanels 5 0.8752 0.8717 0.8471 0.0079 0.40
Light Shelf (Bottom) void plastic LightShelfBottom 5 0.4851 0.4963 0.4958 0.0552 0.05
Light Shelf (Top) void plastic LightShelfTop 5 0.4929 0.5007 0.4951 0.0515 0.05
Opaque Roller Shade void plastic OpaqueShade 5 0.5812 0.5560 0.4676 0.0059 0.20
Glazing void glass Glazing 3 0.3815 0.3815 0.3815
Roller Blinds void BRTDfunc RollerBlinds 10 0 0 0 tspec tspec tspec 0 0 0 mechoshade.cal

0 9 0.37 0.37 0.37 0.56 0.56 0.56 0.2 0.2 0.2

Exterior White Painted Wall void plastic WhiteExteriorWall 0 0 5 0.4067 0.4968 0.5054 0.0050 0.3
External Mullions void plastic ExternalMullions 0 0 5 0.4732 0.5545 0.5009 0.0252 0.15
Decorative Floor Tiles void plastic DecorativeExternalFloorTiles 0 0 5 0.1545 0.1628 0.1390 0.0089 0.2
Specular Steel Handrail void plastic SpecularSteelHandrail 0 0 5 0.2247 0.2896 0.2991 0.3287 0.05
Asphalt void plastic Asphalt 0 0 5 0.1086 0.0998 0.0850 0.0004 0.4
Wood Plank Walkway void plastic WoodPlankWalkway 0 0 5 0.1162 0.0958 0.0841 0.0011 0.4

Monitor Screen void trans MonitorScreen 0 0 7 0.575 0.575 0.575 0.033 0.01 0.88 1
High-State Pixel void glow MonitorHigh 0 0 4 1.396 1.396 1.396 0
Low-State Pixel void glow MonitorLow 0 0 4 0.3352 0.3352 0.3352 0
Dark Plastic void plastic MonitorPlasticBlack 0 0 5 0.054 0.054 0.062 0.013 0.1
Light Plastic void plastic MonitorPlasticSilver 5 0.464 0.470 0.452 0.078 0.1

Table 2. An example list of Radiance material definitions from Office 5)

2.2 External Measurements
Real-time weather data was collected from an existing weather station located at the rooftop of the
authors’ university campus at 36 m above ground level with no urban obstructions. Global horizontal
solar irradiation (W/m2) is measured from a silicon pyranometer and recorded every 5 minutes by a data
logger. Global horizontal solar irradiation was split using the Reindl (Reindl et al., 1990) method into
direct-horizontal and diffuse-horizontal irradiance. A customized Radiance .wea weather file (Reinhart
and Walkenhorst, 2001) was then created for each office space back-dated one year from the date of visit.
For example, if the date of visit was 16 May 2017, a custom weather file was created between 16 May
2016 and 17 May 2017.

2.3 Validation of HDR Images
To validate the accuracy of the HDR images, which will be used for glare analysis and point-in-time
calibration of the daylighting model, measured vertical illuminance, Emea, was compared to the total
pixel illuminance contribution from the equi-angular HDR images Ev, as calculated in equation 1. As
the HDR images with illuminance measurements were calibrated to the measured illuminances, only the
HDR images that were calibrated through the luminance measurements are included in this validation,
shown in Figure 5. The grey line illustrates the ideal calibration of HDR images, and it is notable that
the total pixel illuminance contribution fell slightly below than sensor measured vertical illuminance for
luminance-calibrated images.

Ev = ∑
θp<90◦

Lp ωp cos θp (1)
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where Lp is the luminance (cd/m2) of the individual pixel, p, ωP is the solid angle (str) of that pixel, and
θp is the incident angle from the pixel to the center of the photograph. The authors then calculate the
root mean squared error (RMSE) between the HDR illuminance and sensor-measured illuminance with
equation 2 as follows:

RMSE =

√
∑(Ev −Emea)

2

n
(2)

where Ev is the total pixel illumination contribution derived from n number of HDR images, Emea is the
measured vertical illuminance. The relative RMSE, RMSErel , refers to the percentage deviation from
the mean while relative mean bias error MBErel is the Mean Bias Error relative to the mean. Both were
calculated according to Equations 3 to 5:

RMSErel =
RMSE
Ēmea

(3)

MBE =
∑(Ev −Emea)

n
(4)

MBErel =
MBE
Ēmea

(5)

where Ēmea is the mean of the measured vertical illuminances. RMSE on the logarithmic scale is also
calculated, as the photopic sensitivity response of the human eye to lighting intensity is on a logarithmic
scale rather than on a linear basis.(Reinhart and Andersen, 2006) Hence logRMSErel is also calculated as
per Equations 6 to 7:

logRMSE =

√
∑(log10Ev − log10Emea)

2

n
(6)

logRMSErel =
logRMSE
log10Ēmea

(7)

The results showed a RMSErel of 23.24% in linear space, logRMSErel of 9.60% in logarthmic visual space,
a slight negative bias of -9.91% MBErel , where MBE in linear space is -21.9lux, as illustrated in Figure 5.

2.4 Calibration of Electric Lighting
As the exact model and lamp selection of the luminaires were not available, an appropriate IES file
(Committee et al., 1991) was selected to be used in the simulation models, based on luminaire dimensions
and photometric distributions observed in the captured HDR images. After loading the IES file into the
lighting simulation model, the luminaires were located as per the 3D scan data. An occupant’s viewpoint
was simulated using high-quality ambient Radiance parameters (see Table 3), and the global horizontal
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Figure 5. Total pixel illuminance contribution v.s.
Measured Vertical Illuminance for
luminance-calibrated HDR images

irradiance value that is recorded by the weather station nearest to the time of field measurement was used
as the input for the Perez all-weather sky model (Perez et al., 1993) during a calculation. To keep daylight
contribution to a minimum, a viewpoint further away from the facade was chosen when calibrating the
photometric distribution and intensity of electric lighting data. A scale factor is approximated and ies2rad
(Ward, 1994) was ran to multiply the brightness output of the luminaires. This process was repeated until
a appropriate scaling factor was reached as shown in Figure 6. Although a desk further away from the
facade is selected to reduce errors due to the high variability of daylight which may skew the calibration
process of electric lighting, daylight is still included as ambient lighting in the scene.

Figure 6. Calibration of electric lighting
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2.5 CBDM Simulation Data and IES Simulation Data
Grid-based annual lighting simulations without roller blinds and electric lighting were ran for all 10 office
spaces indicating the various daylighting conditions due to the diverse building typologies, materials, floor
plans and building depths. Figure 7 illustrates the variation of daylight experienced by the participants in
the 10 surveyed office spaces represented by Annual Mean Illuminance. A red line illustrates a Daylight
Autonomy value of [75%] at an illuminance threshold of 300 lux. For validation purposes, climate-based
daylighting simulations were ran using Daysim (Reinhart and Walkenhorst, 2001) for each office space,
with roller blinds, per 5-minute time step using the custom weather data file generated for each office
space. The Radiance parameters used for the climate-based simulations are as shown in Table 3 with
6 ambient bounces. Since light is additive, the simulated daylight and electric light illuminances were
simulated separately and are summed up to calculate total simulated horizontal or vertical illuminance
from electric lighting and daylighting. Electric lighting simulations includes only light from luminaires
and monitor screens and are simulated at 4 ambient bounces instead of 6. These simulated values at the
nearest simulated time step to the field HDR and illuminance measurements are validated against the
measured lighting data which are detailed further in the next section.

Radiance Parameters Visualizations Climate-based Simulations
Ambient bounces (ab) 4 6
Ambient divisions (ad) 1000 2000
Ambient super-samples (as) 500 1000
Ambient resolution (ar) 500 1000
Ambient accuracy (aa) 0.1 0.1

Table 3. Typical Radiance parameters used for visualizations and validation simulations

3 Results
After the iterative process of calibrating the electric and daylighting portions of the lighting simulation
models (see Figure 1), the authors compared the accuracy of the results with measurements by extracting
the point-in-time simulation data nearest to the time of measurement for each of the 540 occupant desks
measured during the 13 month period of this study. RMSErel values of 25.8% and 45.5% were achieved
between sensor measured illuminance and simulated point-in-time illuminances horizontally and vertically
as illustrated in Figure 8. The grey line is a y = x identity line representing the ideal calibration situation.
Vertical illuminance deviates from the measured illuminance more than that of horizontal illuminance.
Vertical RMSErel values are exasperated by the variety of monitor types and configurations measured at
various workstations where on/off status, the brightness setting, monitor type, monitor size, and monitor
number vary wildly between participants; all of these will have an impact on measured vertical illuminance.
Logarithmic differences are known to express perceived lighting differences by the human eye better
than actual absolute differences in different lighting situations. (Reinhart and Andersen, 2006) Hence,
the authors decided to use logRMSErel as a paired validation measure of the CBDM daylighting models
indicating how close calculations come to human perceptual differences in addition to standard linear
lighting unit errors. In the base-10 logarithmic visual space, the models had 4.3% and 6.8% logRMSErel
for horizontal and vertical illuminances respectively. The overall MBE was 0.3 lux (0.0006%) and 61.8
lux (23.3%) for horizontal and vertical simulated illuminance respectively.

Figure 10 compares two selected calibrated HDR images to simulated visualizations using falsecolor
luminance images scaled between 0 cd/m2 and 300 cd/m2. Overall these images are representative of
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Figure 7. Annual Mean Illuminance and Daylight Autonomy for
all 10 offices simulated (without roller blinds and electric lighting)
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Figure 8. Scatter plots of measured vs simulated horizontal and vertical illuminance

Figure 9. Simulated daylight and electric light illuminances of Office 7 and 10 as
stacked column plots, and field-measured horizontal illuminance as a red line

those simulated during the calibration process. Differences specifically in the monitor brightnesses can
be observed based on discrete user factors as mentioned as a cause of high vertical errors in the previous
paragraph. Figure 11 compares the accuracy of the simulation models per office space (as shown in
Figure 7) by their horizontal (yellow) and vertical (blue) RMSErel values. Office 4 is an example of a
well-calibrated model with both horizontal and vertical RMSErel values of approximately 25%. Figure 9
depicts individual horizontal illuminance simulation results (stacked bars) compared to measured values
(red lines) for buildings 7 and 10. Results are split between the electric lighting and daylighting simulation
contributions. Simulated illuminances follow the overall trend of field-measured horizontal illuminance,
and daylighting components of the calculated illuminance tend to be more volatile than electric lighting
calculations as might be expected considering desired even workplane illuminances from electric lighting
in most office spaces.
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Figure 10. Comparison of calibrated HDR images and
simulated visualizations from the same viewpoint

Figure 11. Horizontal and Vertical RMSErel values between
measured and simulated point-in-time values
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4 Discussion

The authors believe that sharing their experience with the field measurement and calibration process of the
10 models in this paper would be beneficial to the reader. To achieve more accurate simulation results from
the lighting models, the authors suggest to identify problematic data points—illuminance calculations at
participant desks with large discrete errors—and resolving modeling issues for those desks by comparing
their HDR images to simulated model views using measured solar data and a Perez sky model (Perez
et al., 1993). Large discrete errors found in this study during the early calibration process were mostly
attributed to modeling errors that influenced daylighting and electric lighting issues, or both. For electric
lighting discrepancies, typical corrections include identifying missing luminaire fixtures, making sure they
were not coplanar with ceiling surfaces, and adjusting their luminous power (see Figure 6). Calibration of
electric lighting may prove difficult but is important to capture in simulations to describe the occupants’
experience. The proposed method can also be used by measuring the building with electric lights turned
off; however, that was not an option in this study. On the other hand, for daylighting discrepancies,
adjustments of roller blind position and missing roller blinds were common modelling errors. In some
cases, the transmission and angular properties of roller blinds had to be adjusted based on measured
values. Roller blind statuses may be uncertain throughout the year, but the authors’ focus is validating the
instantaneous condition by simulating the horizontal and vertical illuminance values, at the same time-step
as measurement, to be validated against actual measurement values. In addition, reproducing actual user
behavior is impossible without long-term monitoring, so a first possibility is to apply the methodology to a
design-type model without active shades. Secondly, some researchers have also suggested using blind
control algorithms, and this may also be applied to the CBDM daylighting models with ease, if desired.
For example, Gunay et al. have suggested outputting ranges of results based on different plausible models
(Gunay et al., 2017) while others are mostly prescriptive. (Nezamdoost et al., 2014; Reinhart, 2004).
Another third method is to monitor the blind usage with a drawstring potentiometer to capture actual blind
behavior over a period of time (McNeil, 2018). Future work on field measurement of roller blinds would
be beneficial, as diffuse and specular transmission data was rarely available in the authors experience and
is difficult to measure in the field. There were often difficulties in discerning the sources of predictive
errors between simulation and reality due to the presence of both daylight and electric lighting in the HDR
images used to compare with the simulated visualizations. In most cases, building-level biases (increased
horizontal illuminance levels at each desk) were able to identify when the electric lighting was the cause
of a significant error.

In addition, field calibrations of lighting models have many difficulties in practice that have not been
found in other calibration studies which are often based upon unoccupied spaces. The issues arising from
monitor variety, screen image, user-specific brightness settings, and the choice to turn a monitor off before
a measurement have already been described. Initially, the authors noticed a higher MBEoverall of around
100 lux for vertical illuminance ultimately caused by monitor screens. Based on the HDR measurements,
the authors attributed the main cause to the effective peak luminance of monitor screens being too high at
250cd/m2, and the peak luminance was reduced to 125cd/m2 which reduced the relative and bias errors.
Each individual participant also has a variety of desk layout differences and personal or work items or
clutter present that will influence the lighting results. Observation of Figure 3 will illustrate placement
differences in keyboards and monitors as well as a wealth of objects which are impractical to model
individually and likely change from day-to-day. These are real limitations that must be accepted as error
sources when field-calibrating lighting models. Other error sources which are difficult to surmount are the
difficulty in selecting IES datasets with accurate photometric distributions, unknown maintenance and
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cleaning cycles, a variety of lamps with varied lumen outputs installed throughout buildings, and proxy
geometry of the simulated electric lights not reflecting the direct view of the light source from the actual
luminaire geometry in reality even though the overall photometric distribution is accurate.

The proposed field calibration method presented in this paper has several limitations. It is sometimes
difficult to obtain information of actual glazing transmittances for fixed glazing, since they cannot be
measured easily in the field. Modeling directional and diffusing properties of complex glazing and roller
blinds also presents challenges where no detailed goniophotometer measurements exist. Where possible,
the authors have tried to obtain accurate information from the individual building developers to increase
the accuracy of the models. In addition, the location of the weather station may also cause discrepancies
in the custom sky models used to simulate the instantaneous lighting data used in calibrations due to
global horizontal irradiance being recorded from a different location on the island up to 25 km away in
the case of this study. In the future, portable irradiance data loggers should be utilized at least during
the field measurement period. Although the authors used the Reindl, et al. splitting model (Reindl et al.,
1990) to derive direct and diffuse components from the global horizontal irradiance, there exists the
possibility to derive diffuse fractions from global measures, time, and location. Based on previous research
(Chandrasekaran and Kumar, 1994), researchers compared measured diffuse fractions and a computed
model for a tropical location to the one preferred by Reindl, et al. It was found that clear sky conditions
under humid tropical conditions had a higher diffuse fraction than the model of Reindl, et al., but that the
relative standard deviation only improves from 32.2% to 29.4% by using a tropically-derived splitting
model. Although the International Weather for Energy Calculation (IWEC) weather data is also mostly
derived from global horizontal irradiance methods using splitting algorithms and sometimes observed
cloud cover, although further improvements can be achieved with seasonally-specific splitting models.

Six participant data points were removed during data analysis due to horizontal and vertical illumi-
nance errors of more than 1,000 lx, which may be attributed to weather data inaccuracies likely due to
disparate cloud cover pattens at specific times. These discrepancies are typical and expected of field
measurements, unlike precise laboratory measurements that can be controlled to a higher level of accuracy.
Dynamic shading devices are included in the calibration models, but their operation will obviously vary
across the year. The authors suggest simulating a calibrated model without dynamic shades represents
the base design case, which is useful to compare with subjective participant opinions. Behavioral and
automated dynamic shading models may also be applied to resultant annual simulations.

5 Conclusion
The proposed process to build calibrated climate-based models for POE’s based on one-time field measure-
ments at each building is validated through comparing measured and simulated illuminance data, and the
results are sufficiently positive with logRMSErel values of 4.3% and 6.8% and RMSErel values of 25.8%
and 45.5% for horizontal and vertical illuminances. While 20% is often seen as a best-case validation
result in the lighting community, the authors suggest that the additional horizontal error observed in this
study is acceptable given the complex field conditions and the fact that the errors only make up a small
logarithmic perceived difference in lighting. Vertically with regards to occupant monitors, errors begin to
grow unacceptably large, and it may be beneficial to specifically measure monitor screen brightnesses or
to turn them off in future field measurement and calibration studies. As occupied spaces are usually of
limited access to researchers, the non-invasive method presented here can allow reliable annual lighting
information to be used for POE’s through short visits instead of relying on long-term and invasive direct
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monitoring data using illuminance sensors or HDR photographs. As the proposed workflow does not
require constant monitoring and is non-invasive, this could also increase willingness of participants to
engage in lighting POE studies.

The authors find that the proposed workflow of building calibrated models of existing spaces opens
up possibilities of assessing long-term quantitative lighting results after a short visit for measurements
which can be analyzed in correlation to subjective occupant responses that are collected in the same visit.
This provides a reasonably reliable set of instantaneous and long-term lighting results and subjective
responses from occupants for in-depth analysis, of which initial results have been reported elsewhere
(Jakubiec et al., 2018). The authors acknowledge that the proposed methodology may be more complex
than a simpler point-in-time measurement (which is also included in the proposed process as well), but
building calibrated CBDM daylighting models enables researchers to simulate annual daylighting metrics
based on measured annual weather data. At the same time it is significantly cheaper than long-term
monitoring techniques due to less demands of manpower and equipment as measurements can be collected
from multiple users using a single set of instruments during a short visit. Predicted lighting results from
the design or construction phase of the building may also be analyzed with the post-occupancy results
later on, for an additional feedback loop to architects and lighting designers and policy makers for lighting
requirements in sustainable building assessment criteria.

Although the accuracy of field-calibrated models is not expected to surpass that of those in controlled
laboratory setups, it is still a sufficiently reliable method to determine and detect lighting variations in
a POE study. Problematic data points with large discrete errors have to be identified and rectified while
calibrating the simulation models, as well as correcting for global errors due to electric lighting. In
addition, some limitations in practice such as individual user differences in monitor screens, items in the
workspace, and shade use must be accepted. The authors believe that the validation process presented in
this manuscript is important to accurately drive POE results based on calibrated annual lighting simulations
by nearly eliminating bias errors and minimizing relative errors.
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